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Abstract

Modeling contagious diseases has taken on greater importance over the past several

years as diseases such as SARS and avian influenza have raised concern about

worldwide pandemics.  Most models developed to consider projected outbreaks have

been specific to a single disease.  This paper describes a generic System Dynamics

contagious disease model and its application to human-to-human transmission of a

mutant version of avian influenza.  The model offers the option of calculating rates of

new infections over time based either on a fixed “reproductive number” that is

traditional in contagious disease models or on contact rates for different sub-populations

and likelihood of transmission per contact.   The paper reports on results with various

types of interventions.  These results suggest the potential importance of contact tracing,

limited quarantine, and targeted vaccination strategies as methods for controlling

outbreaks, especially when vaccine supplies may initially be limited and the efficacy of

anti-viral drugs uncertain.
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Introduction

Concerns about the use of contagious diseases for bioterrorism and naturally occurring

diseases such as SARS and pandemic influenza have sparked recent interest in modeling

these diseases and their effects on populations.  Modeling efforts have included those

focused on influenza (Meltzer, 1999) and SARS (Lipsitch, 2003).  Smallpox has also

attracted interest and there have been a number of models developed and reported on.

(Meltzer, 2001; Kaplan, 2002; Halloran, 2002; Eubank, 2004)   All of these models have

some value for examining different response strategies, identifying the best ones in

different circumstances, and thereby helping public health officials prepare in advance for

what would otherwise be catastrophic events.

This paper reports on a generic contagious disease model and its application to human-to-

human transmission of an H5N1-type virus widely referred to as avian influenza.  It is a

System Dynamics model developed with Vensim as part of a much larger emergency

preparedness and infrastructure modeling effort being carried out by Sandia National

Labs in cooperation with Los Alamos and Argonne National Labs for the US Department

of Homeland Security.  The model has been connected to modules representing other

components of a community’s infrastructure including energy supply, transportation,

telecommunications, and health care.  It can reflect how problems in these other sectors

(e.g., breakdown in transportation affecting ability to obtain vaccines) can affect a

community’s ability to control an outbreak and how the spread of the disease will affect

the availability of essential workers to those other sectors.  The model focuses on

contagious disease as a specific threat, following an earlier effort that examined the

effects of an array of threats on a community’s population and health care system.  (See

for example Hirsch, 2004)

Why a Generic Model?

With all of the work already being done in contagious disease modeling, why develop

another model?  There are several reasons:

• The other models tend to focus on individual diseases.  There is value in a model that

can simulate multiple contagious diseases in the same framework, by merely

changing parameters, in order to identify public health capabilities that will help

communities prepare for a wide range of threats from different diseases.  This paper

will describe the generic model’s application to one disease and a version has been

applied to another as well. (LeClaire, 2005)  This approach is consistent with the “all

hazards” approach being adopted in emergency preparedness planning. (FEMA,

2001)

• This model has modest computational requirements and can be made available to

public health authorities to input their own communities’ data for examining possible

response strategies and doing sensitivity analyses in areas where there is uncertainty

about how a particular disease will affect their population.
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• As indicated above, the model can be linked to modules representing various

infrastructure components and simulations can reflect how the spread of disease

interacts with and affects those other components.  It can also reflect the interaction

between contagious disease and various other disasters or attacks.

• The model can address particular resource issues such as the size of temporary field

hospitals that might be required to provide palliative care for victims of an outbreak if

their number exceeds the normal capacity of a community’s hospitals.  It can also

differentiate the effects of an outbreak on key population groups such as health care

workers who are especially vulnerable and yet are crucial to an effective response.

The paper begins by describing the structure of the model.  It then reviews results with

different strategies for intervention in outbreaks of human-to-human transmission of

avian influenza and sensitivity analyses that examine particular parameters.

Structure of the Generic Contagious Disease Model

1. Flows of Patients Among Stages

The model’s flow structure and stages are similar to that in S-E-I-R models (Susceptible-

Exposed-Infected-Recovered) often used in epidemiology.  It represents the populations

of two distinct regions and further segments those populations into five groups:

• Adults 18-64 who work in health care and emergency services

• Adults 18-64 who work in other industries

• Adults 18-64 who do not work

• Children 0-17

• Adults 65 and over

Simulations assume that an outbreak starts in one of the regions and spread to the other as

people travel back and forth between the two.

Figure 1 provides an overview of the model’s main flow of people through the various

stages of contagious illness.  People may contract the disease either though an initial

release or through contact with someone who is infected as the disease spreads through

the community.  Vaccination and quarantine reduce the size of the unexposed population

and reduce its rate of spread and ultimate penetration.  The initial number of people

unexposed is reduced by the fraction of people who have some immunity.   In the case of

an H5N1-type influenza, it is assumed that no one has prior immunity.

Once exposed, people are assumed to incubate the disease for a day and show no

symptoms during that time. (CDC, 2005) They begin to show vaguely flu-like symptoms

during a one-day prodromal period during which there is a chance of transmitting the

disease.  More distinct symptoms break out after the prodromal period and persist for a

five-day period during which the risk of transmission is greatest.  The final stage is a

four-day recovery period, during which transmission is unlikely.   Deaths may occur

during the early or late symptomatic stages.  The overall mortality rate of 2% is assumed

to be distributed evenly between the two symptomatic stages.
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2. Two Different Methods of Projecting New Cases

In the next two views, variables are displayed selectively in different colors to highlight

particular themes.  Figure 2 highlights in red the factors that drive the rate of spread of an

outbreak and can also slow it down.  In this model, there are two different methods that

can be used to calculate the rate of new infections.  One is the approach traditionally used

in S-E-I-R models (Susceptible-Exposed-Infected-Recovered) prevalent in epidemiology

that are based on an assumed value of a “Reproductive Rate” (R0), the number of new

people infected by each infected person over the course of their illness.  The other is

based on typical daily contact rates for different population groups and the fractions of

those contacts by an infected person likely to result in transmission.  This latter approach

was inspired by the EPISIM/EPICAST agent-based modeling work developed at Los

Alamos National Lab (LANL) and adapted for use in an SD model (Eubank, 2004).

The model contains a switch that allows one or the other of these approaches to be used.

Given the uncertainty about the characteristics of a mutated form of avian influenza that

can spread from person-to-person, having this option can provide a broader perspective

about how the disease might be spread and how an outbreak could be stopped.

a. Traditional Approach of S-E-I-R Models

With the traditional approach, the key parameter in determining that rate of spread is the

Reproductive Rate (R0), the number of new cases each infected person generates given

normal patterns of contact and susceptibility.  The value for R0 of 2.55 that was selected

is consistent with a range of values derived for the 1918 pandemic (see Mills, 2004) and

is based on calibration with a model derived from an agent-based approach.

The fraction of transmission occurring prior to clear symptoms distributes responsibility

for the spread between people in the prodromal stage and the remainder that occurs

during the early symptom phase.  This is an important parameter for determining the

extent to which a contagious disease outbreak can be brought under control by isolating

symptomatic patients and whether more aggressive programs of vaccination and general

quarantine are called for.  The 35% value is close to the fraction of 0.4 suggested for

influenza by (Fraser, 2004) and was adjusted based on calibration with the agent-based

model.

b. Spread Based on Contacts

A model was developed separately by LANL that based the new infection rate on

assumed numbers of contacts people in different demographic groups might have with

others in their families, workplaces, and communities, and the potential infectiousness of

contacts by infected people at each stage of the disease.  The contact-based approach

starts with normal contact rates for each demographic group that were derived from the

EPISIM/EPICAST work and reduces those rates based on the fraction of people who are

in quarantine (self- or imposed-).  These normal rates are applied to people who are
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Exposed and Incubating the illness and people in the Prodromal group since they have

not yet developed distinct symptoms.  Adults are assumed to have 20 contacts per day

while children have 9 contacts per day, and older people have 7.  Contact rates are

reduced by 75% for the first day or so after people first become symptomatic and begin to

restrict their activities (e.g., from 20 contacts per day to 5 for adults).   After that first

day, contacts are assumed to fall further to only 0.3 per day if people are isolated and one

per day if they manage to evade isolation.  These contact rates are multiplied by the

number of people in each stage of the disease and a fraction of contacts for each stage

that actually transmit the disease.  The following fractions of contacts are assumed to

transmit the disease.

Exposed and Incubating 0

Prodromal 0.04

Early Symptomatic 0.08

Late Symptomatic 0.015

Table 1: Fractions of Contacts Resulting in Transmission

Tests indicated that this formulation produces a “base run” comparable to one based on a

fixed value of R0 as long as the circumstances being simulated are roughly the same.  For

this comparison, the simulation using the fixed value of R0 was also assumed to have the

limited quarantine in effect.  (See below for an explanation of Limited Quarantine).  This

is similar to the assumption in the contact-based formulation that people’s contacts drop

drastically as they become too sick to go out or are forced to isolate themselves.   Results

of the comparisons between the two methods are presented later in this paper.

3. Spread Between Regions

The rate of new infections based on the spread of the disease calculated for each region

reflects spread within the region plus spread due to people traveling from the other

region.  For example, the rate of new infections based on the spread of the disease in

Region A is the following:

Reproductive Rate (or Contact Rate x Fraction of Contacts Resulting in Transmission) x

(People in Prodromal (A) x Fraction of Transmission Occurring Prior to Clear Symptoms

+ People with Early Symptoms (A) x (1- Fraction of Transmission Occurring Prior to

Clear Symptoms) + Fraction Traveling to Other Region (B) x (People in Prodromal (B) x

Fraction of Transmission Occurring Prior to Clear Symptoms + People with Early

Symptoms (B) x (1- Fraction of Transmission Occurring Prior to Clear Symptoms)))
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4. Limited Quarantine

The spread of the disease as reflected in the model is resisted to some extent by a

mechanism referred to as limited quarantine in which patients are isolated once they

display clear symptoms and no longer spread the infection to others.  This mechanism is

“switched in” once there are ten or more patients displaying symptoms.  Limited

quarantine is not assumed to be perfect, however, and 20% of patients with early

symptoms are assumed to infect some others before being effectively isolated.

5. Strategies for Controlling Outbreaks

Figure 3 displays variables affecting the impact of vaccination and quarantine on the rate

of new infection.  The vaccination strategy in effect, rate of vaccinations, and vaccine

effectiveness rate determine the rate of moving people from the unexposed to unexposed

vaccinated populations.  The model makes it possible to either vaccinate population

groups based on their representation in the general population or assign priority to

particular population groups (e.g., health and emergency service workers, children).

Some of those vaccinated are people who have been infected, but are in the two day

window during which vaccination might cut the number of people exposed who actually

develop and transmit the disease and the fatality rate of those who do develop symptoms.

The fraction of infected likely to be vaccinated during the first two days calculated by the

model is based on the

• program of vaccination in place (mass vs. targeted),

• hourly vaccination rate times 48 hours,

• number of people in the incubation stage,

• fraction of contacts identified, and

• vaccine effectiveness rate.

The fraction of contacts that can be identified is assumed to be 80% and represents an

upper bound on the number of contacts successfully traced and vaccinated, regardless of

the vaccination rate.  People vaccinated during this two-day window go down a separate

flow chain.   80% of them do not develop the symptoms.  People identified as contacts

during the course of targeted vaccination are also quarantined.

Vaccination can be subject to several limits due to:

• Stockpile limitations of available vaccine

• Refusal of people to be vaccinated

• Effectiveness of vaccine in terms of fraction vaccinated who are actually protected

The model applies the most stringent limit in determining the fraction that can ultimately

be vaccinated.

Contact tracing and general quarantine (as opposed to the limited quarantine of

symptomatic patients) are applied in a similar manner to vaccination.  The fraction of

infected likely to be quarantined during incubation period is determined by the ratio of

the applicable contact tracing rate to the rate of people becoming newly infected.  The

fraction of newly infected people identified by contact tracing is a function of the
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• total contact tracing rate for the region,

• fraction of contacts who have actually been exposed, and

• contact effectiveness rate.
The baseline assumption is that twelve contacts are identified for every symptomatic

patient and only three of these have actually been exposed and are incubating the disease,

yielding a fraction of contacts unexposed of 75%.  As with targeted vaccination, the

fraction of contact effectiveness (fraction of contacts identified) is 80%.  Unexposed

patients identified as contacts are still moved from the unexposed to unexposed in

quarantine populations and remain there for a period to assure that they will not become

symptomatic.  People identified by contact tracing who have been exposed go down

another chain shown in which they develop the disease, but are prevented from spreading

it to others.

The model includes various mechanisms for implementing strategies to control

outbreaks.  These mechanisms can be switched in to examine the effects of different

strategies.  A vaccination switch determines whether vaccination is part of the response at

all and a vaccination policy parameter determines the type of vaccination strategy:

• Mass vaccination

• Shifting vaccination in which targeted vaccination is used initially and then a shift

occurs to mass vaccination after 28 days if the outbreak has not been controlled

• Targeted vaccination in which contact tracing is used in combination with selective

vaccination of identified contacts

Vaccination programs selected are initiated after ten or more symptomatic patients

appear.  Once initiated, vaccination programs are implemented in a manner that enables

them to reach their maximum hourly vaccination rate after a five-day third order delay.

Maximum vaccination rates of 400 per hour for mass vaccination and 100 per hour for

targeted vaccination (which is more labor-intensive due to the need for contact tracing).

Selecting targeted vaccination also automatically selects contact tracing.  The effective

targeted vaccination rate is the lesser of the contact-tracing rate, maximum targeted

vaccination rate, or number of newly infected patients.  Contact tracing by itself (solely to

quarantine contacts) is initiated in the same manner as vaccination and is implemented

after a similar delay before the maximum contact-tracing rate is achieved.  As indicated

earlier, the impact of both contact tracing and targeted vaccination is limited by the

maximum fraction of contacts identified, assumed to be 80%.

The structure shown in Figure 4 simply reflects the flows of people in the community as

the disease affects them.  People move from the functioning to the disabled population as

they develop the prodromal stage.   They also begin to require treatment.  The model

tracks the number of people requiring hospitalization in order to be able to track bed

requirements.  A fraction of hospitalized patients die, determined by mortality rates

elsewhere in the model, and the remainder go home to recover.  After recovery, they

rejoin the functioning population.  A fraction could become permanently disabled, but

this fraction is currently set to zero due to lack of the necessary data.  The model also

calculates the numbers of health care and emergency services workers and workers in

other sectors unavailable due to deaths and disability caused by the disease.
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The other significant piece of structure adopted from the LANL model is the tendency of

people to self-quarantine once an epidemic has begun to spread in an area.  This may be

something people do spontaneously or in response to a government order.  The maximum

rates of people quarantining themselves range from 20-30% for adults who must go to

work to 70-80% for young children and older people who can stay home more readily.

The effect of self-quarantine with both formulations (fixed R0 and contact-based) is

imposed on both the size of the susceptible population that can be affected and the rate of

transmission that occurs between infected people and those who are susceptible.  This

pattern of self-quarantine was left as an option to be selected by the user rather than

assumed to occur in each simulation.   As discussed later, the different formulations yield

qualitatively different results that illustrate the value of taking these two perspectives.

Results of Simulations with Strategies for Controlling Outbreaks

1. Matching Baseline Simulations for Two Methods of Calculating New Infections

The first task, before exploring strategies for controlling outbreaks, was to assure that the

two methods of calculating new infections produced roughly comparable results.  Curves

for cumulative cases from the two simulations are shown in Figure 5 below.   No other

programs such as vaccination or contact tracing are in effect.

Figure 5: Comparison of Baseline Simulations for Two Formulations of Infection Rates

The red line represents Cumulative Cases with the original formulation in the GID model

(SW=0) based on an assumed R0 of 2.55.  The blue line (SW=1) reflects the new

formulation based on contacts.  The two match reasonably well in terms of their timing

and the ultimate attack rate experienced in the region.  Further testing reveals some
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interesting differences between how the two formulations react to particular interventions

and sensitivity tests.  These differences will be discussed later in this paper.

The small differences between the two simulations are easier to observe in the overall

rates of new infections shown in Figure 6.  The rate of new infections takes a bit longer to

develop in the formulation based on contact rates (SW=1 in blue), but then has a

narrower and taller peak.

Figure 6: Comparison of New Infection Rates for the Two Formulations

In these baseline simulations and all of the others, the initial event that sets off the

outbreak is five infected people arriving in Region A from elsewhere.  Results shown in

the following tables are for Region A only.

2. Mass Vaccination

Results with the two formulations for mass vaccination differ only in terms of the

thresholds at which mass vaccination fails to be effective when certain key parameters

are changed.   The effects of having a very small stockpile of vaccine available or having

to use anti-viral drugs rather than vaccines are of special interest because of potential

delays in producing enough vaccine if avian flu mutates into a form that can be

transmitted between people.  Table 2 shows results for mass vaccination, using each of

the two formulations, in terms of Cumulative Cases in one region of 100,000 at the end of

a six-month period.  References to stockpiles represent the availability of vaccines or

anti-viral drugs expressed as a percentage of the population that is initially susceptible.
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Based on Fixed R0 Based on Contacts

Base, No Interventions 34,373 35,088

Mass Vaccination with Stockpile =

10% of Population 15,390 24,195

20%   1,312   9,451

25%      503   2,205

30%                  420

25% Stockpile with

71% Vaccine Effectiveness      547

50% Vaccine Effectiveness      609

10% Stockpile with

50% Vaccine Effectiveness 16,051 24,228

3x Delay in Phase-In of Program

(15 days vs. 5 days) and

30% Stockpile      717

20% Stockpile   1,925 10,347

10% Stockpile 16,421

Table 2: Results with Mass Vaccination Programs (Cumulative Cases)

As shown in Table 2, the size of the stockpile of vaccine available appears to make the

biggest difference in whether it’s possible to limit the attack rate experienced by the

community.   Though even a stockpile equal to 10% of the population can have a

significant impact on the number of cases, compared to the “do-nothing” baseline, a

stockpile of 20-30% is required to bring the attack rate (cumulative percentage of people

infected) down below 1% of the population.  Longer delays in starting the program don’t

seem to make much of a difference whether stockpiles are too small or large.

Levels of vaccine effectiveness that were simulated (percentage of people rendered

immune) reflect the 71% estimated in one paper for anti-viral drugs (Balicer, 2005) and

50% which may be more realistic in light of recent news reports about the declining

effectiveness of anti-virals.  Changes in the effectiveness assumed for vaccines also

appear to have little impact in making the program any less effective.  However, vaccine

effectiveness’ apparent lack of impact is partly the result of the parameters chosen for

these simulations.  Experiments with a low level of effectiveness and large stockpile have

the same result as the simulations with a small stockpile and higher level of assumed

effectiveness.  The smaller of the two constraints, size of the stockpile or vaccine

effectiveness, appears to determine whether a mass vaccination program can stop an

outbreak
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The impacts of mass vaccination are similar for both formulations, but are achieved at a

lower level of stockpile available with the formulation based on the fixed R0.  Given the

degree of uncertainty in the numbers used in both formulations, it’s difficult to say that

either is likely to be more accurate.  Instead, they together represent a range of possible

thresholds for effective mass vaccination.  The more important point is that severe

stockpile limitations early in an outbreak may compromise the effectiveness of mass

vaccination and not be the best use of limited supplies.  It may be necessary to commit

enough vaccine to the initial communities that experience outbreaks instead of following

a politically more expedient course of spreading limited supplies over many states.

3. Targeted Vaccination

Another, more efficient use of limited supplies may be targeted vaccination which

combines contact tracing, vaccination of contacts of symptomatic patients, and quarantine

of those contacts until it’s clear they’re not going to develop the disease.  Table 3 shows

the results of a number of simulations using targeted vaccination strategies with different

assumptions about effectiveness and potential flows of infected people into the

community after an outbreak has begun.  Unless otherwise noted, only a 10% stockpile is

assumed along with 98% vaccine effectiveness and 80% contact effectiveness (people are

able to remember and/or contact tracing is able locate 80% of actual contacts).  Again,

results shown are Cumulative Cases after six months.

Based on Fixed R0 Based on Contacts

Base, No Interventions 34,373 35,088

Targeted Vaccination with

80% Contact Effectiveness        68

50%      115        50

30%      404

20%    1,106   6,171

20% Contact Effectiveness and

36% Vaccine Effectiveness   1,184 10,162

10% Contact Effectiveness and

36% Vaccine Effectiveness 11,091 25,314

Inflow of 20 Infected People/Day and

30% Contact Effectiveness 14,032 15,583

50%   8,475   8,367

80%   5,159   4,782

Table 3: Results with Targeted Vaccination Programs (Cumulative Cases)
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Based on Fixed R0 Based on Contacts

R0=4, 50% Contact Effectiveness   1,649

R0=4, 50% Contact Effectiveness,

Inflow of 20 People/Day 23,970

Table 3 (Cont’d): Results with Targeted Vaccination Programs (Cumulative Cases)

The striking thing about the results shown in Table 3 is that targeted vaccination

programs appear to be effective even when only 20-30% of contacts can be found and

treated effectively.  This is because the “effective R0” with both formulations is low

enough that even a 20-30% reduction will bring its value below one.  (The assumptions

that symptomatic people are isolated or otherwise drastically reduce their contacts helps

to reduce this effective R0.)  Again, the effect of targeted vaccination is apparent with

both formulations for new infection rate, but is evident at a lower threshold of contact

effectiveness with the first formulation than the second.

These results suggest that targeted vaccination is a much more efficient use of limited

vaccines since they were achieved with a stockpile of only 10%.  (An even smaller

amount of vaccine was actually needed.)  The power of this approach is in its name,

targeting those contacts who are most likely to transmit the disease, and in the

simultaneous use of quarantine in addition to vaccination. However, the very brief

incubation period of influenza makes speed critical if this strategy is to be effective.

Carrying out this strategy will require preparation in the form of

• enough well-trained people (on whom it might be a good idea to use some of the

limited vaccine supplies),

• very good communications, and

• a support system to bring food and other necessities to people who must remain

quarantined for a number of days.

Targeted vaccination seems more vulnerable if one assumes a steady, small stream of

infected people coming into the region from other areas.  The inflow of infected people

from other areas may be likely if people flee areas with outbreaks and bring new

infections to regions that have been relatively unaffected.   This may require government

to urge people to “quarantine in place” rather than moving around the country to “safer”

areas and bringing their germs with them.   A more rapid rate of spread (e.g., due to a

more easily transmitted virus), reflected in the simulations where R0 is set to 4, may also

undermine the effectiveness of targeted vaccination.  The combination of more rapid

spread and steady inflow of infected people would produce a significant number of cases

at a rate of contact effectiveness (50%) that might otherwise stop an outbreak.
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4. Transmission by Asymptomatic People

The simulations reported on up to this point assume that transmission only occurs in the

case of people who also become symptomatic.  Transmission by asymptomatic people is

suggested by the literature as a distinct possibility, but no one appears to have estimates

of the magnitude of this threat.  The model was used to do some sensitivity analysis to

gauge the potential effects of asymptomatic people transmitting the disease at some

fraction of the rate typical of symptomatic patients.  Table 4 shows the results of these

simulations.  The basic assumptions are that the additional number of people who are

asymptomatic is equal to 50% of the number showing symptoms and those people are

25% as likely to transmit the disease as someone who is symptomatic.

Based on Fixed R0 Based on Contacts

Base, No Interventions 34,373 35,088

(Without the effect of asymptomatic

transmission)

Asymptomatic People = 50% of

Symptomatic; Transmission 25% as

Likely with

No Interventions 60,046 62,442

Targeted Vaccination with

30% Contact Effectiveness 4,528

50%    238 16,266

60%    150   1,076

80%        94

Mass Vaccination with

10% Stockpile 44,773

25% 19,830

30%   9,901

40%      831 23,492

50%      353 12,804

60%   1,633

70%          320

Table 4: Results of Simulations Assuming Transmission by Asymptomatic People

These results indicate a significant increase in the number of Cumulative Cases if there is

transmission by asymptomatic people, even if it is at a much lower rate than for

symptomatic patients.  With transmission by asymptomatic patients included, targeted

vaccination requires a higher degree of contact effectiveness and mass vaccination needs

larger stockpiles in order to bring an outbreak under control.   There is again the same
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pattern where simulations with the formulation based on contacts indicate a need for

higher rates of contact effectiveness or larger vaccine stockpiles in order to limit the

spread.  These results suggest that the issue of transmission by asymptomatic people is an

important one and should be a focus for research.

5. Self-Quarantining

The last set of tests of the model involves the self-quarantining feature that was added.

As indicated earlier, setting a switch can cause different fractions of the population to

self-quarantine in response to the beginning of an outbreak. Self-quarantining is assumed

to cause a reduction in both the size of the susceptible population and rates of contacts

and transmission.  The maximum fractions that self-quarantine are shown in Table 5.

Population Group Maximum Tendency to Self-Quarantine

Health and Emergency Workers 10%

Other Employed 18-64 20

Non-Employed 18-64 40

Under 18 70

Over 65 70

Table 5: Maximum Tendency (%) to Self-Quarantine

Table 6 shows the results of simulations with the self-quarantining function switched on.

Based on Fixed R0 Based on Contacts

Base, No Interventions 34,373 35,088

With Self-Quarantining 16,146        52

           (34,117 at the end

of one year)

With Self-Quarantining and

Mass Vaccination with

10% Stockpile      319

Table 6: Effect of Self-Quarantining on Cumulative Number of Cases at Six Months

The results of assuming self-quarantining are significant with both formulations, but

strikingly different between the two.  The difference is even more striking in that the

number of Cumulative Cases in the simulation based on the fixed R0 is growing at the
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end of six months.  The final value of 34,117 if the simulation is allowed to run out to the

end of a year is close to the value in the base run (without self-quarantining).    Evidently,

self-quarantining has the effect with both formulations of suppressing the growth of new

cases.  In the contact-based formulation, this is sufficient to end the outbreak.  With the

other formulation based on a fixed R0, there are evidently enough cases left that the

numbers start growing again after people stop self-quarantining.  Without another round

of self-quarantining or any other interventions, the numbers eventually reach the level

they would have in the no intervention base case.  The outbreak is merely delayed rather

than stopped.

This disparity between results of the two formulations shows the potential value of

having the option to use both.  Looking at the result with the contact-based formulation,

one might hope that self-quarantining by a significant fraction of the population is

enough to stop an outbreak.  However, the results with the other formulation suggests that

there might be a real danger of merely reducing the number of cases to a low level and

then having the outbreak spring up again once people come out of self-quarantine.  This

further suggests a need to combine self-quarantining with other interventions and to

prepare the public for more than one wave of self-quarantining if an outbreak springs up

again.   Table 6 shows that combining even a weak mass vaccination program (that would

have resulted in 15,390 cases by itself) with self-quarantining might be sufficient to stop

an outbreak.  A stronger effort at self-quarantine (e.g., making it mandatory for a larger

fraction of the population (e.g., those not in essential occupations) might also have a

greater likelihood of stopping the outbreak.
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Figure 1: Flows of People Through Disease Stages
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Figure 2: Factors Affecting Rate of Spread
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Figure 3: Impacts of Quarantine and Vaccination
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